RECURSION

Recursion

* Avrecursive definition is when something is defined partly in
terms of itself

e Here’s the mathematical definition of factorial:

_ 1,ifn<=1
factorial(n) = n * factorial(n — 1) otherwise

 Here’s the programming definition of factorial:

static int factorial(int n) {
if (n <= 1) return 1;
else return n * factorial(n - 1);

}

Supporting recursion

static int factorial(int n) {
if (n <= 1) return 1;
else return n * factorial(n - 1);

3

If you call x = factorial(3), this enters the factorial method
with Nn=3 on the stack

factorial calls itself, putting n=2 on the stack

| factorial calls itself, putting n=1 on the stack
| factorial returns 1

factorial has n=2, computes and returns 21 = 2
factorial has n=3, computes and returns 32 = 6

Factorial

« x = factorial(3)

W;:;t%k asn
o static int factorial(inf n) {

//n=3
1nt r = 1; risputon stack with value 1
if (n<=1) return r;

else { .
r = n * factorial(n - 1);
} return-;
} All references to r use this r

All references to n use this n
Now we recur with 2...

r=1

n=3

Factorial

oriir-—n:* faCtoriauL 1))

2 1S put on stack as n

 static int factorial(int n) {//n=2

}

!nt r=1; r is put on stack with value 1
if (n <=1) return r;

else { nRgs
: Now using this r

r = n* factorial(n - ‘YV); !
return—+; And this n

. Now we recur with 1...

r=1

n=2

r=1

n=3

Factorial
» r =n * factorial(n - 1);

1 is put on stack as n

 static int factorial(int Mo using this r
int r = 1,r is put on stack with value1 And

if (n <=1) return r; fsp
else {
r =n * factorial(n - 1);
return r
} Now we pop r and n off the

} stack and return 1 as
factorial(1)

r=1

n=1

r=1

n=2

r=1

n=3

Factorial

* r = n * factorial(n - 1);

\ Fine—
» static int factorial(int Moy using thisr \
intrs=1; And | r——
if (n <=1) return r; this n
else { r=1
r = n * factorial(n - 1);
return r; =
} ‘ r=1
} Now we pop r and n off the
stack and return 1 as n=3

factorial(1)

Factorial

* r =n * factorial(n - 1);

e static int factorial(int n) {

intr=1;
if (n <=1) return r;
else { Now using this r

— * 1 - :
r n\factgrlal(@ Diand |15

return r; this n

} 2 s e f5-2; r=1

} Pop r and n;
n=3

Return 2

Factorial

« x = factorial(3)

P

» static int factorial(int m
intr=1;

if (n<=1) return r;
else {

r = n* factorial(n - 1);
return; =

} } 35 sl Now using this r
Pop r and n;
Apd fac=6
this n

Return 6

Stack frames

Rather than pop variables off the stack one at
a time, they are usually organized into stack
frames

Each frame provides a set of variables and
their values

This allows variables to be popped off all at
once

There are several different ways stack frames
can be implemented

AY4

Summary

Stacks are useful for working with any nested
structure, such as:

— Arithmetic expressions
— Nested statements in a programming language
— Any sort of nested data

