
RECURSION

2

Recursion
• A recursive definition is when something is defined partly in

terms of itself

• Here’s the mathematical definition of factorial:

• Here’s the programming definition of factorial:

 static int factorial(int n) {

 if (n <= 1) return 1;

 else return n * factorial(n - 1);

}

factorial(n) =
1, if n <= 1
n * factorial(n – 1) otherwise

3

Supporting recursion
 static int factorial(int n) {

 if (n <= 1) return 1;
 else return n * factorial(n - 1);
}

• If you call x = factorial(3), this enters the factorial method
with n=3 on the stack

• | factorial calls itself, putting n=2 on the stack

• | | factorial calls itself, putting n=1 on the stack

• | | factorial returns 1

• | factorial has n=2, computes and returns 2*1 = 2

• factorial has n=3, computes and returns 3*2 = 6

4

Factorial
• x = factorial(3)

• static int factorial(int n) {
//n=3
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1

All references to r use this r

All references to n use this n

3 is put on stack as n

Now we recur with 2...

5

Factorial

• r = n * factorial(n - 1);

• static int factorial(int n) {//n=2
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1

Now using this r

And this n

Now we recur with 1...

n=2

r=1

2 is put on stack as n

6

Factorial

• r = n * factorial(n - 1);

• static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1

Now using this r

And

this n

n=2

r=1

n=1

r=1

1 is put on stack as n

Now we pop r and n off the

stack and return 1 as

factorial(1)

7

n=1

r=1

Factorial

• r = n * factorial(n - 1);

• static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

Now using this r

And

this n

n=2

r=1

r=1

n=1 fac=1

Now we pop r and n off the

stack and return 1 as

factorial(1)

8

Factorial

• r = n * factorial(n - 1);

• static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

Now using this r

And

this n

2 * 1 is 2;

Pop r and n;

Return 2

r=1

n=2

1

fac=2

9

Factorial

• x = factorial(3)

• static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1 Now using this r

And

this n

3 * 2 is 6;

Pop r and n;

Return 6

2
r=1

n=3 fac=6

10

Stack frames

• Rather than pop variables off the stack one at
a time, they are usually organized into stack
frames

• Each frame provides a set of variables and
their values

• This allows variables to be popped off all at
once

• There are several different ways stack frames
can be implemented

n=3

r=1

n=2

r=1

n=1

r=1

11

Summary

• Stacks are useful for working with any nested
structure, such as:

– Arithmetic expressions

– Nested statements in a programming language

– Any sort of nested data

